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Knowledge of the elastic properties of Li–Si alloys as a function of Li concentration is crucial in the devel-
opment of reliable deformation and fracture mechanics models for Si anodes in Li-ion batteries. Here,
we have studied these properties using first-principles calculations for both amorphous and crystalline
phases observed during lithiation of Si anodes. In the case of crystalline alloys, we present the anisotropic
elastic tensors as well as the homogenized Young’s, shear, and bulk moduli and the Poisson’s ratios. We
find that while these moduli decrease in an approximately linear manner with increasing Li concentra-
attery
ilicon
ithium
lastic constants
morphous alloys
ensity functional theory

tion leading to significant elastic softening (by about one order of magnitude) in both crystalline and
amorphous systems, the Poisson’s ratios remain in the range of 0.05–0.20 and 0.20–0.30 in the case
of crystalline and amorphous systems, respectively. Further, for a given Li concentration, we find that
the amorphous structures are elastically somewhat softer than their crystalline counterparts, the differ-
ence being more significant (about 30–40%) in Li-poor phases. Our results underscore the importance
of including the concentration dependence of elastic constants in the analysis of stress and deformation
fields during lithiation and de-lithiation of Si anodes.
. Introduction

Advanced energy storage technologies for transportation indus-
ries require further improvement of the power, energy density,
nd durability of Li-ion batteries for use in hybrid electric vehicles
HEV), plug-in HEV (PHEV), and all-electric vehicles (EV). Currently,
he negative electrode material used in most Li-ion batteries is
raphite, which forms lithium–graphite intercalation compounds
Li-GIC) [1,2]. Compared to graphite, Si can store ∼10 times more
i, as the gravimetric energy densities are 3572 mAh g−1 for Si, and
72 mAh g−1 for graphite. However, this extremely high capacity
f Si is associated with massive structural changes and volume
xpansion on the order of 300% [3–5], resulting in electrode parti-
le fracture, disconnection between the particles, capacity loss, and
hus very limited cycle life.

Wolfenstine [6] demonstrated that using the Young’s modulus,
he fracture toughness, and the volume change, a critical particle

ize for low capacity fade could be estimated with analytical model-
ng. Mathematical models of deformation and corresponding stress
elds during lithiation and de-lithiation of idealized electrodes
ave been recently developed [7–14]. In all of these continuum-
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level models, the intrinsic mechanical properties of electrodes, such
as Young’s modulus and Poisson’s ratio are assumed to be con-
stants, independent of Li concentration. This is not surprising, given
the lack of experimental data as well as theoretical calculations.
Recently, Qi et al. used density functional theory (DFT) to demon-
strate that the polycrystalline Young’s modulus (E) of graphite
increases linearly with Li concentration, and triples when graphite
is fully lithiated to LiC6 [15]. The lithiation process of Si is differ-
ent from the interaction process of Li in graphite, where Li ions are
intercalated between the graphite sheets during the charging cycle
and removed during discharge with minimal structural change and
a 10% variation in volume. Si experiences large structural changes
upon lithiation and de-lithiation. If Si is lithiated at high temper-
ature (415 ◦C) in a LiCl–KCl melt, crystalline structures of Li7Si3,
Li12Si7, Li13Si4, and Li22Si5 phases will form; these structures can
also be found in the equilibrium phase diagram prepared metal-
lurgically [16]. At room temperature, in a Li-ion battery cell, when
Li–Si is electrochemically cycled, crystalline Si becomes amorphous
LixSi as it is lithiated [17]. If Si is lithiated completely, the crystalline
Li15Si4 phase is obtained [18–19]. Using an in situ stress measure-

ment technique, rapid rise in compressive stress has very recently
been observed during lithiation of Si anodes ultimately leading to
plastic flow [20]. However, data on the elastic properties and fail-
ure of Li–Si alloys is currently not available to quantitatively model
these measurements.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:Vivek_Shenoy@brown.edu
dx.doi.org/10.1016/j.jpowsour.2010.04.044
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Table 1
Equilibrium structural parameters for Li, Si, and LixSi alloys obtained from PAW-GGA calculations. The number of irreducible k points used in the DFT calculations in each
case is also given in the table.

Phase x Space group a (Å) b (Å) c (Å) Volume (Å3) k-points

Si 0.000 Fd3̄m 5.472 5.472 5.472 163.814 20
LiSi 0.500 I41/a 9.357 9.357 5.746 503.071 144
Li12Si7 0.632 Pnma 8.532 19.612 14.302 2393.069 4
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we used the relations between different elastic constants [39] to
deduce the Young’s modulus, the shear modulus, and the Pois-
son’s ratio. Note that the basis vectors of the optimized amorphous
supercell obtained using our relaxation procedure need not in

Table 2
Comparison of the calculated formation energies with the work of Chevrier et al. [38]
for amorphous Li–Si phases. The formation energy was calculated using expression:
Ef = E(LixSi) − [xE(Li) + E(Si)], where x is the number of Li atoms per Si atoms, E(LixSi)
is the total energy of the LixSi structure divided by the number of Si atoms used
in the calculation, E(Li) is the total energy of the single Li atom elemental BCC Li
(−1.895 eV), and E(Si) is the total energy of a single Si atom in elemental Si diamond
lattice (−5.422 eV).

Phase (x in LixSi) Formation energy Ef (eV)
Li13Si4 0.765 Pbam 7.914
Li15Si4 0.789 I43̄d 10.595
Li22Si5 0.815 F23 13.189
Li 1.000 Im3̄m 3.442

Recently, the electronic structure, lattice vibrations, and the
irch-Murnaghan equation of state of crystalline phases was stud-

ed by Chevrier et al. using first-principles calculations [21,22].
owever, the Young’s and the shear moduli and the Poisson’s ratio
ecessary for analyzing fracture and shear flow during lithiation
ere not considered in their study. Similarly, while the structures

f amorphous phases have been considered, there is no information
vailable on the elastic properties on amorphous alloys. In this arti-
le, we compute the complete elastic constants of Li–Si crystalline
nd amorphous phases, using first-principles calculations. Our goal
s to derive a functional form of the relationship between the aver-
ged elastic modulus and the Li concentration in the alloy, so that
his information can be readily used in continuum-level models of
eformation and failure. In the case of crystalline alloys, we present
nisotropic elastic constant tensors as well as orientationally aver-
ged Young’s, shear, and bulk moduli and the Poisson ratios. In
he case of amorphous alloys we directly compute these moduli
sing structures generated using ab initio molecular dynamics sim-
lations. We find that the moduli of Li–Si alloys decrease almost

inearly with Li concentration and it drops to about an order of
agnitude of its original value of Si, when it is fully lithiated (in

he Li15Si4 and Li22Si4 phases). The observed elastic softening is
xplained by considering the charge–density and atomic bonding
n lithiated alloys. Our calculations also show why the amorphous
lloys are generally softer than their crystalline counterparts. These
esults suggest that mechanical modeling of Si anode deforma-
ion and fracture needs to account for varying material and elastic
roperties with Li concentration.

. Methods

DFT calculations were performed using the Vienna Ab Initio
imulation (VASP) Package [23,24] with the Projector Augmented
ave (PAW) method and the Perdew–Burke–Ernzerhof (PBE) form

f the generalized gradient approximation for exchange and cor-
elation. For crystalline phases, the structures of the alloys were
btained from crystal structure database and from experimen-
al work [25–30]. From convergence studies, we determined the
inetic energy cutoff in the plane wave expansion to be 300 eV.
he optimized lattice parameters of the crystalline Li–Si phases
btained from our calculations are summarized in Table 1. The
umber of irreducible k points used for each of the Li–Si alloy
hases is also given in this table. The structural data in Table 1
grees well with experimental studies and previous theoretical
ork [18,19,31–37].

Amorphous systems were created using ab initio molecular
ynamics (MD) simulations using the VASP package. We started
ith a periodic super cell that consists of the alloy in its crystalline

orm (typically with 100–150 atoms). The cell was then heated to

temperature much larger than the melting temperature of the

rystalline phase (3000–4000 K). The system was allowed to equi-
ibrate at this temperature for 5000 MD time steps (each MD time
tep = 1 fs). To obtain the amorphous phase, we then cooled these
tructures to room temperature at the rapid rate of 200 K per 200
15.084 4.429 528.725 8
10.595 10.595 1189.472 32
13.189 13.189 1622.280 88

3.442 3.442 40.796 20

MD time steps, i.e., we sequentially reduced the temperature by
200 K and let the system evolve for 200 MD steps. The geome-
tries obtained at room temperature were then relaxed with an
atomic force tolerance of 0.01 eV Å−1. In our relaxation simulations,
along with the atomic coordinates, we also allowed variations of
the dimensions as well as the shape of the super cell. For a given
Li composition up to five statistically independent realizations of
the amorphous structures were created. We emphasize that our
method for generating the amorphous structures is very different
from the protocol employed in Ref. [38]. In particular, we do not
rely on initial atomic configurations obtained from empirical poten-
tials. Our method is based entirely on the DFT formalism and should
therefore be more accurate. Furthermore, the method we have out-
lined is simple to implement as it employs well-established MD
time-integration techniques. Nonetheless, we have found that our
calculated formation energies for amorphous systems (c.f. Table 2)
are in very good agreement with the results obtained by Chevrier
et al. [38].

In case of crystalline systems, elastic constants were deter-
mined by computing the energies of deformed unit cells. For cubic
type phases, Si, Li15Si4, and Li, distortions with tetragonal and
orthorhombic shear, and isotropic distortion along the three lattice
vectors were applied to obtain three independent elastic constants
C11, C12, and C44 (all elastic constants are expressed using the Voigt
notations [39]). For the tetragonal Li–Si phase, we applied six dif-
ferent deformation modes to compute C11, C12, C13, C33, C44, and
C66. For Li12Si7 and Li13Si4, expansion along three high-symmetry
directions, three monoclinic distortions, and three orthorhombic
distortions were applied to obtain nine independent elastic con-
stants. We allowed relaxation of the atomic positions in all the
strained supercells.

Next, we discuss the methodology used to compute the elas-
tic constants of amorphous alloys. Since amorphous phases are
isotropic and are therefore characterized by two independent
elastic constants, the bulk modulus B and the modulus C11. We
first computed B and C and once these quantities were known,
Our results Chevrier et al. [38]

a-LiSi (x = 1) −0.20 −0.22
a-Li12Si7 (x = 1.7) −0.40 −0.44
a-Li15Si4 (x = 3.75) −0.88 −0.80
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Table 3
Calculated elastic constants Cij (in Voigt notation), for Li, Si and Li–Si alloys. All quantities are in units of GPa.

Phase C11 C22 C33 C12 C13 C23 C44 C55 C66

Si 152.168 152.168 152.168 56.842 56.842 56.842 75.034 75.034 75.034
LiSi 101.160 101.160 74.506 20.645 37.343 37.343 55.435 55.435 36.000
Li12Si7 92.500 95.905 88.837 4.987 11.403 8.801 30.168 34.681 44.939
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Li13Si4 77.207 64.702 82.247 18.503
Li15Si4 46.644 46.644 46.644 21.907
Li22Si5 89.847 89.847 89.847 1.740
Li 17.952 17.952 17.952 8.936

eneral be orthogonal to each other. Therefore, we employed the
ollowing procedure to obtain the elastic constants. Using Ai to
enote the basis vectors of the cell, we applied the deformation
radient �,

=
[

1 + ε 0 0
0 1 + ε 0
0 0 1 + ε

]

o the basis vectors to obtain the deformed lattice vectors �(ε)Ai.
ere, ε is the percentage deformation/strain. The relaxed energy of

he deformed cell was then computed and fitted to the equation
(ε) = E0 + cε2, where E0 is the energy of the undeformed cell. The
ulk modulus can then be calculated using formula:

= 2c

9V0
(1)

here V0 is the volume of the unstrained cell and c is the coefficient
f ε2 in the quadratic fit.

To calculate elastic constant C11, average of components of C11
long three orthogonal axes was taken. C11 along the global x-axis
Cx

11) of the cell was calculated by multiplying the vectors of the
nit cell with the deformation matrix �’, which was given as:

′ =
[

1 + ε 0 0
0 1 0
0 0 1

]
.

Similarly, Cy
11 and Cz

11 were calculated using the deformation
atrix in which 1 + ε was shifted to 22 and 33 positions of the
atrix given above, respectively. For a truly isotropic system these

onstants should all be equal. In our calculations we found only
mall differences (about 10%) between these cases, confirming that
ur procedure for creating amorphous structure does indeed lead
o a nearly isotropic structure. As in the case of bulk modulus,
he computed energies of the deformed configurations were fit
o the expression E(ε) = E0 + dε2. The elastic constant C11 was then
btained using the volume of the unstrained cell and the coefficient
f ε2 from the formula:

11 = 2d

V0
. (2)

Using the computed values for B and C11, the shear modulus G,
oung’s modulus E, Poisson’s ratio ϑ, for all the systems were then
alculated using the expressions:

= 3(C11 − B)
4

(3)

= 9B(C11 − B)
(C11 + 3B)

, (4)

= (3B − C11)
(C11 + 3B)

(5)
. Results and discussion

The array of elastic constants for crystalline phases consid-
red in our work is given in Table 3. While the elastic constants
7.412 6.746 73.637 32.866 40.595
21.907 21.907 28.019 28.019 28.019

1.740 1.740 30.954 30.954 30.954
8.936 8.936 12.423 12.423 12.423

obtained from the DFT calculations are for single crystals, lithi-
ated Si anodes usually display polycrystalline micro-structures
formed out of aggregation of single crystal grains rotated rela-
tive to each other. Hence, we proceed to deduce polycrystalline
properties from the computed anisotropic single crystal elastic
constants. The determination of the stress or strain distribution
in the assembly of a polycrystalline aggregate with respect to an
external load, can be established from the continuum theories
based on Voigt [40] and Reuss [41] approaches that obtain effec-
tive isotropic elastic constants by averaging the anisotropic elastic
constants over all possible orientations of the grains in a polycrys-
tal. Using energy considerations, Hill [42] proved that the Voigt
and Reuss moduli represent upper and lower limits of the true
polycrystalline constants, and suggested that a practical estimate
of the elastic moduli was the arithmetic means of the extremes.
We have therefore adopted the Hill averaging procedure in our
work.

The orientation averaged elastic constants and Poisson ratios
for crystalline phases are plotted in Fig. 1 along with the plots
of the elastic constants for amorphous structures. These quan-
tities are plotted with respect to the Li fraction y, of the alloy.
For the alloy LixSi, y can be related to x, through the expression
y = x/(1 + x). Note that while x is the ratio of the Li atoms in the
alloy compared to the number of Si atoms, y is the ratio of the Li
atoms to the total number of atoms. The advantage of using y in
favor of x is that for elemental Li x → ∞, while y is 1. Therefore
all the alloy phases can be explored by letting y vary between 0
(Si) and 1 (Li). A further advantage of plotting the elastic moduli
with respect to the Li fraction y is that it allows us to assess the
validity of the “law of mixtures”, which predicts a linear depen-
dence of the computed properties with respect to y. Therefore, in
order to compare the elastic properties of alloy phases with that of
pure Si and pure Li we have plotted the elastic moduli in the range
0 ≤ y ≤1.

From Fig. 1, one can see that for the crystalline systems, the
bulk, shear, and Young’s moduli depend very strongly on Li con-
centration, showing significant softening in the Li-rich phases.
These moduli for the most lithiated phases, Li15Si4 and Li22Si4, are
smaller than the corresponding values for Si by nearly one order
of magnitude. Furthermore, a linear decrease in these properties
with increase in Li concentration y, provides a good approxima-
tion to our results for the bulk, Young’s and shear moduli of the
crystalline phases. The linear fit to the Poisson’s ratio is not as
reliable; the ratio fluctuates between 0.05 and 0.20. Linear fits
also provide an excellent description of the elastic moduli of the
amorphous phases, suggesting that the elastic constants follow
the law of mixtures to a reasonable extent. Writing the moduli in
the form Ay + B(1 − y), we have provided the best fit parameters A
and B for each of the computed elastic constants for both amor-
phous and crystalline phases in Table 4. Using these parameters,

the elastic constants of the LixSi alloy, one can then obtain using
the expression (Ax + B)/(1 + x); for example, the Young’s modulus for
crystalline and amorphous Si can be represented as: E(c − LixSi) =
(37.96x + 156.13)/(1 + x) and E(a − LixSi) = (18.90x + 90.13)/(1 +
x), respectively. These expressions can readily be used to account
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ig. 1. (a) Bulk modulus B, (b) shear modulus G, (c) Young’s modulus E, and (d) Poiss
nd in amorphous (open symbols) phases for the alloy LixSi. The Li fraction in the al
morphous systems, respectively.

or the composition dependence of elastic constants in continuum
lastic models for stress generation during lithiation. We note that
he goodness of fit on the Poisson’s ratio is lower compared to other
lastic constants. Unlike other quantities that show large variations
close to an order of magnitude), the Poisson’s ratio for both the
rystalline and amorphous phases of Li and Si are close (This is evi-
ent from the values of A and B given in Table 4). Also, the Poisson’s
atios of the alloys are close to values for the elemental phases but
uctuate by a small amount, between 0.3 and 0.24 for amorphous
hases and between 0.23 and 0.07 for crystalline phases. Since the
oisson’s ratio enters continuum models of intercalation and frac-
ure [7–14] through factors like 1 − ϑ 1 − 2ϑ, and 1 − ϑ2, the errors
hat arise from using our fits would be rather small (of the order of

0%) even though the goodness of fit is not high.

Next, we compare the elastic properties of amorphous alloys
ith their crystalline counterparts. From the plots of the elastic
oduli in Fig. 1, it is clear that the slopes of the moduli vs. com-

osition fits in the case of amorphous systems are smaller than

able 4
alues of A and B in the expression (Ax + B)/(1 + x) for the elastic constants (bulk,
hear, and Young’s moduli and Poisson’s ratio), where x refers to the concentration
f Li atoms relative to the concentration of Si in the alloy LixSi. These constants
re obtained from the linear fits of elastic constants for crystalline and amorphous
ystems (c.f. Fig. 1). Goodness of fit (R2) is also provided in the table.

Elastic constants Crystalline Amorphous

A B R2 A B R2

B 13.61 88.32 0.99 12.46 65.44 0.99
G 18.01 64.91 0.79 7.63 35.51 0.92
E 37.96 156.13 0.88 18.90 90.13 0.93
ϑ 0.14 0.19 0.06 0.24 0.28 0.24
atio ϑ of Li–Si alloys plotted as a function of Li fraction in crystalline (solid symbols)
given by x/(1 + x). Solid and broken lines show linear fits for the crystalline and the

the slopes in the case of crystalline phases. This can be understood
by noting that the moduli of amorphous Si are smaller than those
of cubic Si by about 30–50%, while the moduli of amorphous Li
and BCC Li are nearly equal. Indeed, the orientations of the sp3

covalent bonds in amorphous Si can deviate considerably from the
tetrahedral angle, which leads to softening of amorphous phase.
Since this directional dependence of the bonds is absent in the
case of metallic Li bonds, the elastic constants of a-Li are close
to that of BCC Li. Subsequently, the elastic properties of Li-rich
amorphous alloys are close to corresponding crystalline phases
while the difference between the moduli of the crystalline and
the amorphous phases is much larger in the case of Si-rich Li–Si
To further relate the computed elastic properties to electronic
structure, we obtained the net charge on Si atoms for each LixSi
alloy. As shown in Table 5 and Figs. 2 and 3, Li donates all its elec-

Table 5
Net charges on Li and Si atoms in Li–Si alloys. The labels of the Si atoms (1–4) are
given in Figs. 2 and 3. The net charges on the atoms were computed from the charge
densities obtained from the PAW-PBE calculations using the Bader charge analysis.

Phase (x in LixSi) Charge on
Li atoms

Charge on Si atoms

Si(1) Si(2) Si(3) Si(4)

LiSi (x = 1) 1.00 −1.00 – – –
a-LiSi (x = 1) 1.00 −1.04 −0.40 −1.14 −0.78
Li12Si7 (x = 1.7) 1.00 −2.00 −1.14 −2.43 −1.60
Li13Si4 (x = 3.25) 1.00 −3.95 −2.55 – –
Li15Si4 (x = 3.75) 1.00 −3.75 – – –
a-Li15Si4 (x = 3.75) 1.00 −4.15 −2.67 −2.90 −4.05
Li22Si5 (x = 4.4) 0.91 −4.00 – – –
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Fig. 2. Charge distribution in crystalline Li–Si alloys with charge density contour level of 0.04 e bohr−3. Si and Li atoms given are represented by blue and green spheres,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).
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ig. 3. Charge distribution in amorphous (a) LiSi and (b) Li15Si4 alloys, with charge
reen spheres, respectively. (For interpretation of the references to color in this figu

rons to Si atoms, becoming Li ion with +1 net charge. Si atoms take
p — 1–4 electrons, leading to a net charge of −1 to −4 compared
o the crystalline Si. The charge state of Si depends on the number
f both Si and Li neighbors. In the case of Li12Si7 phase, Si atoms
an acquire as many as 4 distinct charge states depending on where
hey are located in the unit cell; 4 Si atoms sitting at the center of
he triangle in Fig. 2(c) are in charge state of −2, while the 4 Si atoms
itting at the top of the triangle have a net charge of −1.14 and the 8
i atoms that form the base of the triangle acquire a charge of −2.43,
hile the 40 Si atoms that form pentagons possess net charge of
1.6. For the case Li13Si4, 4 Si atoms that form dumbbells are in a

harge state of −3.95 while the 4 isolated Si atoms possess a charge
f −2.55. Charge states of Si atoms in LiSi and Li15Si4 phases were
stimated to −1 and −3.75, respectively. For amorphous structures,
ifferent Si atoms have different numbers or Li and Si neighbors,
o the charge on Si atoms varies accordingly. For example, Si atoms
hat are not in the vicinity of other Si atoms and are surrounded by

i atoms (for example Si(1) and Si(4) in Fig. 3(b)) form ionic Li–Si
onds and possess a net charge of −4. On the other hand Si atoms

n close proximity (for example Si(2) and Si(3) in Fig. 3(b)) carry
nly net charge in the range −2.6 to −2.9, indicating reduced ionic
haracter.
y contour level of 0.04 e bohr−3. Si and Li atoms are given represented by blue and
end, the reader is referred to the web version of the article.).

Based on these calculations it is clear that covalent Si–Si bonds
are replaced with ionic Li–Si bonds with increasing Li concentra-
tion. This can be clearly seen from the charge density plots in Fig. 2
that show the decrease in overlap of the charge densities from
neighboring Si atom as one proceeds from LiSi to Li22Si5. Our calcu-
lations therefore show that the ionic Li–Si bonds are intermediate in
strength compared to covalent Si–Si bonds and the metallic Li–Li
bonds, Elastic softening of the alloy phase is consistent with the
increase in the relative population of these ionic bonds.

4. Conclusions

In conclusion, we have computed the elastic properties of crys-
talline and amorphous Li–Si alloys and have found that they depend
strongly on Li concentration. By considering the electronic struc-
ture of the alloys, we attribute elastic softening to the increase in
the population of ionic Li–Si bonds that are weaker than the cova-

lent Si–Si bonds. Since the elastic moduli at the highest levels of
lithiation are smaller than that of Si by an order of magnitude, our
results have important implications in the fracture and flow of Li–Si
alloys. Since fracture energy scales with modulus of the alloy, we
expect the fracture energy also to decrease with Li concentration.
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s the level of stresses achieved during charging and discharging
ycles in Li–Si alloy should depend on the modulus and fracture
trength of the alloy, the composition dependence derived in this
ork should be included in the mathematical models for defor-
ation and failure. As noted in Section 1, recent measurements
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